Goto

Collaborating Authors

 Nashville


Why I've converted to using HP's Omen AI for serious FPS gains

PCWorld

While visiting HP's Omen gaming exhibit at the company's Amplify Conference in Nashville Tennessee this week, I realized something: I've been optimizing my PC's performance for Counter-Strike 2 all wrong! What I'm doing is painstakingly combing through my hardware settings, OS settings, and game settings in a confusing and sometimes panic-ridden mind muddle in the hope I'll achieve an actual uplift in FPS. That's where HP's Omen AI comes in. Originally unveiled at CES 2025 Las Vegas last January, Omen AI made another appearance at the conference in Nashville, this time showing off some impressive FPS gains on both laptops and desktop PCs. In one of the promotional videos, Omen AI boosted a laptop's performance from 82 FPS to 111 FPS.


Divide-and-Conquer Predictive Coding: a Structured Bayesian Inference Algorithm Eli Sennesh 1, Hao Wu2 Department of Psychology, Vanderbilt University, Nashville, TN, USA

Neural Information Processing Systems

Unexpected stimuli induce "error" or "surprise" signals in the brain. The theory of predictive coding promises to explain these observations in terms of Bayesian inference by suggesting that the cortex implements variational inference in a probabilistic graphical model. However, when applied to machine learning tasks, this family of algorithms has yet to perform on par with other variational approaches in high-dimensional, structured inference problems. To address this, we introduce a novel predictive coding algorithm for structured generative models, that we call divide-and-conquer predictive coding (DCPC); it differs from other formulations of predictive coding, as it respects the correlation structure of the generative model and provably performs maximum-likelihood updates of model parameters, all without sacrificing biological plausibility. Empirically, DCPC achieves better numerical performance than competing algorithms and provides accurate inference in a number of problems not previously addressed with predictive coding. We provide an open implementation of DCPC in Pyro on Github.


FT-AED: Benchmark Dataset for Early Freeway Traffic Anomalous Event Detection Austin Coursey, Marcos Quinones-Grueiro 1, William Barbour

Neural Information Processing Systems

Early and accurate detection of anomalous events on the freeway, such as accidents, can improve emergency response and clearance. However, existing delays and mistakes from manual crash reporting records make it a difficult problem to solve. Current large-scale freeway traffic datasets are not designed for anomaly detection and ignore these challenges. In this paper, we introduce the first large-scale lanelevel freeway traffic dataset for anomaly detection. Our dataset consists of a month of weekday radar detection sensor data collected in 4 lanes along an 18-mile stretch of Interstate 24 heading toward Nashville, TN, comprising over 3.7 million sensor measurements.


FT-AED: Benchmark Dataset for Early Freeway Traffic Anomalous Event Detection

Neural Information Processing Systems

Early and accurate detection of anomalous events on the freeway, such as accidents, can improve emergency response and clearance. However, existing delays and mistakes from manual crash reporting records make it a difficult problem to solve. Current large-scale freeway traffic datasets are not designed for anomaly detection and ignore these challenges. In this paper, we introduce the first large-scale lane-level freeway traffic dataset for anomaly detection. Our dataset consists of a month of weekday radar detection sensor data collected in 4 lanes along an 18-mile stretch of Interstate 24 heading toward Nashville, TN, comprising over 3.7 million sensor measurements.


Pitfalls of defacing whole-head MRI: re-identification risk with diffusion models and compromised research potential

arXiv.org Artificial Intelligence

Defacing is often applied to head magnetic resonance image (MRI) datasets prior to public release to address privacy concerns. The alteration of facial and nearby voxels has provoked discussions about the true capability of these techniques to ensure privacy as well as their impact on downstream tasks. With advancements in deep generative models, the extent to which defacing can protect privacy is uncertain. Additionally, while the altered voxels are known to contain valuable anatomical information, their potential to support research beyond the anatomical regions directly affected by defacing remains uncertain. To evaluate these considerations, we develop a refacing pipeline that recovers faces in defaced head MRIs using cascaded diffusion probabilistic models (DPMs). The DPMs are trained on images from 180 subjects and tested on images from 484 unseen subjects, 469 of whom are from a different dataset. To assess whether the altered voxels in defacing contain universally useful information, we also predict computed tomography (CT)-derived skeletal muscle radiodensity from facial voxels in both defaced and original MRIs. The results show that DPMs can generate high-fidelity faces that resemble the original faces from defaced images, with surface distances to the original faces significantly smaller than those of a population average face (p < 0.05). This performance also generalizes well to previously unseen datasets. For skeletal muscle radiodensity predictions, using defaced images results in significantly weaker Spearman's rank correlation coefficients compared to using original images (p < 10-4). For shin muscle, the correlation is statistically significant (p < 0.05) when using original images but not statistically significant (p > 0.05) when any defacing method is applied, suggesting that defacing might not only fail to protect privacy but also eliminate valuable information.


Nashville school district defends no metal detectors before school shooting: 'Unintended consequences'

FOX News

Parents spoke after the Antioch High School shooting on Wednesday, Jan. 22, outside of Nashville, Tennessee. Antioch High School in Nashville, Tennessee, where a deadly shooting took place last Wednesday, did not have metal detectors due to some administrators' concerns about racism, the New York Post reported. "I knew this day was gonna happen," Fran Bush, a former Metro Nashville Public Schools (MNPS) board member, told the New York Post. "I knew it was gonna happen just because it's like a free open door, everybody coming in." The shooting, which left 16-year-old student Josselin Corea Escalante and the suspect dead, has parents calling for the school to bring in metal detectors after the AI security system failed to detect the 17-year-old gunman's weapon.


The year in cancer: Advances made in 2024, predictions for 2025

FOX News

At the beginning of 2024, the American Cancer Society predicted that 2,001,140 new cancer cases and 611,720 cancer deaths would occur in the United States. Now, as the year draws to a close, experts are looking back and reflecting on the discoveries and advances that have been made in the field of cancer treatment and prevention. Fox News Digital spoke with four oncologists from the Sarah Cannon Research Institute in Nashville, Tennessee, about the most notable accomplishments of 2024 and what they see on the horizon for 2025. See the answers and questions below. Krish Patel, M.D., is director of lymphoma research at Sarah Cannon Research Institute in Nashville, Tennessee.


Formalizing Stateful Behavior Trees

arXiv.org Artificial Intelligence

Behavior Trees (BTs) are high-level controllers that are useful in a variety of planning tasks and are gaining traction in robotic mission planning. As they gain popularity in safety-critical domains, it is important to formalize their syntax and semantics, as well as verify properties for them. In this paper, we formalize a class of BTs we call Stateful Behavior Trees (SBTs) that have auxiliary variables and operate in an environment that can change over time. SBTs have access to persistent shared memory (often known as a blackboard) that keeps track of these auxiliary variables. We demonstrate that SBTs are equivalent in computational power to Turing Machines when the blackboard can store mathematical (i.e., unbounded) integers. We further identify syntactic assumptions where SBTs have computational power equivalent to finite state automata, specifically where the auxiliary variables are of finitary types. We present a domain specific language (DSL) for writing SBTs and adapt the tool BehaVerify for use with this DSL. This new DSL in BehaVerify supports interfacing with popular BT libraries in Python, and also provides generation of Haskell code and nuXmv models, the latter of which is used for model checking temporal logic specifications for the SBTs. We include examples and scalability results where BehaVerify outperforms another verification tool by a factor of 100.


Field Deployment of Multi-Agent Reinforcement Learning Based Variable Speed Limit Controllers

arXiv.org Artificial Intelligence

This article presents the first field deployment of a multi-agent reinforcement-learning (MARL) based variable speed limit (VSL) control system on the I-24 freeway near Nashville, Tennessee. We describe how we train MARL agents in a traffic simulator and directly deploy the simulation-based policy on a 17-mile stretch of Interstate 24 with 67 VSL controllers. We use invalid action masking and several safety guards to ensure the posted speed limits satisfy the real-world constraints from the traffic management center and the Tennessee Department of Transportation. Since the time of launch of the system through April, 2024, the system has made approximately 10,000,000 decisions on 8,000,000 trips. The analysis of the controller shows that the MARL policy takes control for up to 98% of the time without intervention from safety guards. The time-space diagrams of traffic speed and control commands illustrate how the algorithm behaves during rush hour. Finally, we quantify the domain mismatch between the simulation and real-world data and demonstrate the robustness of the MARL policy to this mismatch.


FT-AED: Benchmark Dataset for Early Freeway Traffic Anomalous Event Detection

arXiv.org Artificial Intelligence

Early and accurate detection of anomalous events on the freeway, such as accidents, can improve emergency response and clearance. However, existing delays and errors in event identification and reporting make it a difficult problem to solve. Current large-scale freeway traffic datasets are not designed for anomaly detection and ignore these challenges. In this paper, we introduce the first large-scale lane-level freeway traffic dataset for anomaly detection. Our dataset consists of a month of weekday radar detection sensor data collected in 4 lanes along an 18-mile stretch of Interstate 24 heading toward Nashville, TN, comprising over 3.7 million sensor measurements. We also collect official crash reports from the Nashville Traffic Management Center and manually label all other potential anomalies in the dataset. To show the potential for our dataset to be used in future machine learning and traffic research, we benchmark numerous deep learning anomaly detection models on our dataset. We find that unsupervised graph neural network autoencoders are a promising solution for this problem and that ignoring spatial relationships leads to decreased performance. We demonstrate that our methods can reduce reporting delays by over 10 minutes on average while detecting 75% of crashes. Our dataset and all preprocessing code needed to get started are publicly released at https://vu.edu/ft-aed/ to facilitate future research.